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ABSTRACT: 
 
We present a practical method for producing a high-resolution digital elevation map (DEM) from a set of spatially overlapping 
images. We start with the principle that multiple low-resolution DEMs can be combined to form a high-resolution DEM provided 
that (i) the sample DEMs are registered to the same coordinate system; (ii) the elevation estimates at each posting are partially 
independent; and (iii) the elevation errors between postings within a DEM are partially independent.  Under these conditions, each 
sample DEM contributes an incremental amount of new information to the composite DEM.  As a result, increasing the number of 
sample DEMs will increase the spatial resolution as well as decrease its vertical error bounds of the composite DEM.  The key to an 
effective implementation of this algorithm is the ability to produce sample DEMs which are free from large blunders.   
We are able to separate valid elevation estimates from blunders by exploiting their uniquely statistical properties.  In general 
elevation estimates (computed by image matching algorithms) are members of one of two populations:  Valid estimates in which the 
image matching algorithm identified a pair of corresponding pixels (one in the reference image and one in the target image) that are 
projections of the same surface point; and blunders in which the image matching algorithm identified corresponding pixels that are 
not projections of the same surface point.  Since blunders are not related to the surface, corresponding pixels can occur anywhere in 
the search range.  As a result, valid elevation estimates have an error distribution characterized by an unbiased normal distribution 
with a small standard deviation, and (ii) blunders have an error distribution characterized by a uniform distribution spread out over a 
much larger range.  The standard deviation of the valid error distribution corresponds to the elevation range seen by a single pixel; 
whereas, the width of the blunder distribution corresponds to the full search range. 
 
 

1. INTRODUCTION 

This paper is concerned with the process of fusing repeated 
samples of motion parallax captured by a moving camera to 
recover the 3D structure of a scene.  In particular, we describe a 
DEM tiling approach that produces an accurate 3D 
representation by fusing a sequence of DEMs made from 
repeated samples of the motion parallax. The method generates 
a sequence of partially overlapping DEM tiles, which are 
averaged together to reduce noise and form a continuous model 
of the underlying terrain.  For this method to be successful, a 
normally distributed, unbiased process must characterize the 
error distribution of the elevation data in individual tiles. 
 
Unfortunately, computed DEMs often are contaminated by 
large errors (blunders) that result from errors during the image 
matching process.  These errors produce spikes in the disparity 
and elevation maps.  Although averaging reduces their 
magnitude, the spikes are not eliminated from the data.  As a 
result, combining multiple DEMs has the undesirable effect of 
increasing the frequency of error spikes.  Thus, identifying and 
removing large errors from the individual DEM tiles is key to 
fusing a collection of DEM tiles. 
 
We use the principle of self-consistency developed by Leclerc, 
Luong and Fua (Leclerc et al.,1998a) to identify unreliable 
points in a distribution.  The main focus of their work was to 

obtain a quality measure for correspondence algorithms without 
relying on ground truth. Their algorithm obtained a probability 
distribution by counting the number of corresponding image 
points for each object point that is consistent with the viewing 
geometry within a specified error limit.  Consistency checking 
in stereo algorithms has previously been used (Chang et 
al.,1991; Faugeras et al.,1993; Fua,1993; Konolige,1997; 
Matthies et al.,1995). In a closely related application (Fua and 
Leclerc,1996; Leclerc et al.,1998b), extend their work to detect 
changes in terrain by applying the concept of self-consistency 
to elevations.  We improve on consistency checking by first 
detecting unreliable elements in DEMs generated from two 
images and then excluding unreliable estimates from an 
information fusion process across more than two stereo pairs.  
 

2. METHODOLOGY 

Our algorithm uses the self-consistency difference to separate 
valid elevation estimates from blunders.  The self-consistency 
difference is defined as the elevation difference arising from 
changing roles of the reference and target images.  From a pair 
of spatially overlapping images A and B, two DEMs can be 
produced ZAB and ZBA with a self-consistency difference (ZAB - 
ZBA).  We show through an analysis using simulated and real 
data that the self-consistency difference (ZAB - ZBA) in 
conjunction with the match scores can be used to separate valid 
elevation estimates from blunders. 



 

 
This model predicts that the blunders will have a 
disproportionate influence on the tails of the distribution of 
elevation errors. Thus, to accurately represent the elevation 
error distribution, the histogram of (ZAB - ZBA) is fit to a 
model that includes a Gaussian distribution plus a constant, 
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where hi are the histogram entries from (ZAB - ZBA) , z0 and s 
are the mean and standard deviation of the distribution, 
respectively, hmin is the asymptotic value of the tails and hmax 
is the value at the peak of the distribution. The parameters (z0, s, 
hmin, hmax) are found by fitting the model expressed in 
Equation 1 to the histogram of (ZAB - ZBA). 
 
Based on this noise model, three methods for detecting blunders 
are explored: 
 
1. Set a blunder threshold to a multiple of s (the width the 

distribution in Equation 1).  The elevation estimates 
ZAB(x,y) and ZBA(x,y) are considered reliable if 
⏐ZAB(x,y) - ZBA(x,y)⏐ < n⋅s, (where n is a user defined 
parameter). 

 
2. Set a blunder threshold to a user defined absolute value. 

Since the self-consistency difference can be interpreted as 
an uncertainty, the operator can reject elevation estimates 
where the self-consistency difference is above a desired 
value.  For example, the operator may wish to reject any 
posting where the uncertainty is greater that 1 meter. 

 
3. Set a blunder threshold to accept a percentage of the 

postings.   
 
If there are N overlapping images, each from a unique 
viewpoint, then there are a total of N(N-1) ordered  image pairs.  
Thus, there are a maximum of N(N-1) samples at every posting 
in the DEM. Applying one of the blunder detection criteria may 
reduce the number of elevation estimates.  However, as long as 
there are at least two elevation estimates at a posting, an 
improved mean and estimated error bounds can be found. 
 

3. EXPERIMENTS 

The method is tested using two data sets, a synthetic data set 
consisting of a dense array of elevation postings and a set of 
photorealistic images of a desert scene, and a set of nine Ikonos 
images of central Boston.  The synthetic data set was used to 
evaluate the spatial error characteristics of the DEM fusion 
method.  For example, to examine the spatial decorrelation 
characteristics requires ground truth that is denser than the 
decorrelation length scale of the data.  The use of synthetic data 
is based on the assumption that a previously acquired DEM and 
ortho-image can serve as pseudo ground truth over an extended 
area, and that a photo-realistic synthetic image can act as an 
image source.  Starting with a high resolution DEM and ortho-
image, the method generates synthetic images from arbitrary 
viewpoints using a ray-tracing algorithm.  The quality of the 
DEM fusion algorithm can be tested by re-computing a DEM 
from the synthetic images and comparing it to the pseudo 
ground truth. 

 
3.1 Constructing synthetic pseudo ground truth 

We have constructed a pseudo ground truth DEM and ortho-
images from a set of four overlapping aerial images.  We then 
used a ray tracing program to create synthetic aerial images.  
These synthetic images were used as input to reconstruct a 
DEM.  The degree of similarity between the true and 
reconstructed DEM was analyzed using error variograms. 
 
The following is a summary of the procedures used to create the 
pseudo ground truth.  We started with a set of four 9 x 9 inch 
aerial images (digitized to 7800 x 7800 pixels) of a high desert, 
taken from an altitude of about 5000 feet.  To make the tests 
more tractable, we selected four 2000 × 2000 pixel sub-images 
that were almost completely mutually overlapping.  Figure 1 
and Figure 2 show two of these sub-images.  
 
From these four sub-images (labelled A, B, C, and D) we 
constructed the pseudo ground truth as follows: First, each 
image pair (A-B, A-C, A-D, B-C, B-D, C-D) was converted to a 
pair of epipolar aligned images.  Then the disparity maps 
between the epipolar aligned image pairs were found using the 
image matching algorithm developed in (Schultz,1995).  For 
each epipolar pair (for example, A and B), two disparity maps 
dAB and dBA were computed.  The first subscript denotes the 
reference image and the second subscript denotes the target 
image.  The reference and target images are defined such that 
the pixels (i,j) in the reference image and (i+d(i,j), j) in the 
target image are projections of the same surface facet. 
 

 
 
Figure 1: Sub-image A of the high desert imagery (2000x2000 
pixels). 
 



 

 
 
Figure 2: Sub-image B of the high desert imagery (2000x2000 
pixels). 
 
From an image processing point of view, the disparity maps 
define a function that warps the target image into the reference 
image.  The function d(i,j) defines a displacement for the pixels 
in the target image that brings it into alignment with the 
reference image.  From a pair of images, two warping functions 
(disparity maps) can be defined – dAB which warps B into A, 
and dBA which warps A into B. 
 
In the absence of image matching errors the DEMs (ZAB and 
ZBA) derived from the disparity maps (dAB and dBA) would be 
similar.  Matching algorithms, however, are notorious for 
finding false matches which produce large errors in the 
recovered DEMs.  Our system was specifically designed to 
reduce the occurrence of false matches and to detect and 
remove false matches (or the elevation errors resulting from 
false matches).  After image matching, the next step was ortho-
rectification which converted each disparity map into a DEM.  
In this case, the four test images yielded 12 disparity maps (dAB, 
dBA, dAC, dCA, etc.) and twelve sample DEMs (ZAB, ZBA, ZAC, 
ZCA, etc.). 
 
The final step in creating a pseudo ground truth data set was to 
fuse the 12 sample DEMs into the single high quality DEM and 
ortho-image.  This was done by computing six self-consistency 
errors maps by taking the difference between the DEMs created 
from a pair of epipolar aligned images, δAB = (ZAB - ZBA), δAC = 
(ZAC - ZCA), etc.  The self-consistency errors are compared to a 
threshold (e.g., 1.0 meter).  If the self-consistency difference 
exceeds this threshold, the elevations estimates are labelled 
unreliable.  Next, the fused DEM was formed by taking a 
weighted average of the reliable elevation estimates.  The 
weights are the inverse of the self-consistency differences (i.e., 
1/δ).  This maximum likelihood approach assigns a higher value 
to elevation estimates where self-consistency difference is 
small.  The fused DEM is shown in  
Figure 3. Further details of the fusing process are described in 
(Schultz et al.,2002). 

 
 
Figure 3 The fused pseudo ground truth DEM.  
 

 
 
Figure 4: The DEM recovered by fusing the individual DEMs 
generated from the synthetic images. 
 
3.2 Recovering the DEM from synthetic images 

We then created a set of four synthetic images from the pseudo 
ground truth DEM using a photo-realistic ray tracing program.  
This allowed us to generate images of the pseudo ground truth 
from an arbitrary position. As an initial test we decided to place 
the synthetic cameras in the same position as the positions from 
which the original images were taken.  This allowed us to 
double-check our viewpoint synthesis procedure by making 
sure that image features corresponded across the original and 
the synthesized images. Synthetic images were created at the 
same resolution as the ground truth DEM (2000 x 2000 pixels) 
so that we could test the ability to capture fine spatial detail.  
 



 

 
Figure 5: Distribution of differences of elevation estimates 
between Figure 3 and Figure 4. 
 

Figure 6: A map of the number of reliable elevation estimates 
contributing to the final result. 
 
From the four synthetic images (A,B,C,D) a total of twelve 
DEMs (ZAB, ZBA, …, ZCD, ZDC)  and six self-consistency 
difference arrays (ZAB,- ZBA, …, ZCD - ZDC)  were generated.  
Using the first method described above for selecting reliably 
postings, a threshold of 2s was selected, which corresponded to 
±0.4m. The resulting DEMs were fused according to the above 
described procedure and the result is shown in Figure 4. Figure 
5 shows the distribution of the differences between this DEM 
and the pseudo ground truth; Figure 6 shows a map of the 
number of reliable elevation estimates.  About 98% of the fused 
DEM elements had 10 or more reliable values, 215 out of the 4 
million had 3 or less reliable estimates, and only 157 had no 
reliable elevations estimates. In addition, there were no 
apparent blunders or spikes in the fused DEM, and the rendered 
surface appeared realistic. 
 
3.3 Experiments with Ikonos data 

In the second set of experiments, we constructed a fused DEM 
of central Boston from nine Ikonos images, collected from three 
orbital passes. From each of these 10K × 10K Ikonos images, a 
2048 × 2048 sub-image that viewed the same area of Boston 
were extracted.  Image 46, one of the 2048 × 2048 sub-images 
is shown in Figure 7 (each image was labelled by two unique 
digits taken from its original Space Imaging label).  
 
To avoid possible epipolar alignment problems with cross-track 
image pairs, we generated DEMs only from image pairs taken 
along the same orbital track.  The nine images resulted in 
eighteen pairs. We applied epipolar alignment to this set of 
images and created nine 3072 × 3072 epipolar aligned 

(rectified) image pairs (three image pairs from each of the three 
orbital passes).  A larger output size was chosen to compensate 
for geometric distortions introduced by epipolar alignment.  
 

 
 
Figure 7: Ikonos image 46 of central Boston. 
 

 
 
Figure 8: A 400x400 sub-image of image 46, resampled in 
epipolar geometry, generated from image pair 46-48. 
 
A sample of one epipolar aligned image pair (orbit 2 image pair 
46-48) is shown in Figure 8 and Figure 9. Notice the large 
amount of perspective distortion associated with the tall 
buildings, the presence of confusing shadow patterns, and the 
large number of occluded surfaces. Also notice that all stereo 
parallax is horizontal.  The epipolar-aligned pairs were 
examined manually to test for any vertical stereo disparity.  
Less than one pixel of vertical stereo disparity was detected. 
These results verified the quality of the RPC-epipolar alignment 
algorithm for images taken along a single orbit.  



 

 
 
Figure 9: A 400x400 sub-image of image 48, resampled in 
epipolar geometry, generated from image pair 46-48. 
 
For each epipolar-aligned image pair, two disparity maps were 
generated using the image matching procedure, resulting in 
eighteen disparity maps.  Then a DEM was computed for each 
disparity map using ortho-rectification.  We also ortho-rectified 
the match scores for each disparity estimate. Elevation 
estimates were labelled reliable if the self-consistency 
difference fell below a preset threshold and the match scores 
were above a preset threshold (in this case the thresholds were 
3.0 meters and 0.8 respectively). The size of each DEM was 
2454 postings in latitude by 3308 postings in longitude.  The 
latitude range was from 42.3444° to 42.3632° North, and the 
longitude range was from -71.0736° to -71.0482° East, with a 
grid spacing in latitude and longitude of 7.66e-6°. The 
distribution of the elevations is shown in Figure 13. The 
elevation range was (-50m, 184m) relative to the WGS84.   
 
The eighteen sample DEMs were fused to form (1) a single high 
quality DEM, (2) a map of the standard deviation of reliable 
elevation estimates, (3) map of the number of reliable elevation 
estimates used to compute each elevation estimate, and (4) a 9-
bit code giving the image pairs that produced the elevation 
estimates (e.g., if bit-0 is set then the image pair 43-44 
contributed to the elevation estimate, if bit-1 is set then image 
pair 43-45 contributed, etc.). 
 
A typical sample DEM (from image pair 46-47) and it elevation 
distribution are shown in Figure 10 and Figure 11.  Notice the 
apparent lack of detail in the DEM.  The fused DEM and its 
elevation distribution are shown in Figure 12 and Figure 13. 
The fused DEM shows considerably more detail. Also note that 
small peaks can be seen in the tails of the elevation distribution 
which may correspond to tall buildings. To illustrate the 
relationship between the fused DEM and buildings, the fused 
DEM was projected back into one of the original Ikonos 
images.  Figure 14 shows a 2k × 2k section from one of the 
original Ikonos images and the corresponding fused elevations. 
The power of the fusion method can be seen by comparing the 
sample DEM (Figure 10) with the fused DEM (Figure 12). 

 
 
Figure 10: A DEM generated from a single pair (46-47) of 
Boston images. 
 

 
Figure 11: The elevation distribution for the sample DEM 
shown in Figure 10. 
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Figure 12: The final DEM computed by fusing all DEMs 
generated from the set of nine Ikonos images. The elevations 
are encoded in greyscale such that lower elevations are dark and 
higher elevations are light.  Unreliable elevations are encoded 
in black. 
 
 

 
Figure 13: The elevation distribution for the fused DEM shown 
in Figure 12. 
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Figure 14: A composite color image of Boston with the original 
image (Figure 7) encoded in value, elevations (Figure 12) 
encoded in hue, and the standard deviation of the elevation 
errors encoded in saturation.   
 


